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WTL Team
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UC Berkeley

- Algorithm Design

- Reachable Sets

- Hybrid Mode Switching

NASA Armstrong

- WTL C Code

- S/W V&V

- HIL Simulation

U. Tulsa

- NYC Cost Map

- S/W Requirements 
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Emergency Landings
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 Commercial 

 General Aviation 
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Where To Land
• Where To Land (WTL) is a emergency forced landing algorithm 

developed by UC Berkeley

• Inflight emergency  vehicle forced to land

– What is the optimal landing location that will minimize loss of life and

minimize property damage given a set of constraints 

– What is the optimal trajectory required for the aerial vehicle to reach 

optimal landing location?

• WTL attempts to mimic an expert pilot’s decision making and 

land the aircraft 
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WTL Algorithm
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Pre-Planning

Cost Map Loss Tolerance
Fault

Location

Real Time Update

Emergency 

Trajectory

Sensor

Observations

Updated 

Trajectory

Reachable Sets

Pre-Planning - pre-compute trajectories using fault 

location, maps and reachable sets

Real Time Update – adapt emergency trajectory based on 

real time data (weather, occupancy, etc.)

State Estimator
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Innovation
• Simple dynamics model

• Assumes aircraft can return to runway

• Difficult to apply to autonomous vehicles

• Haven’t been flight tested

www.nasa.gov 7

• Provides safety guarantees for V&V

• Allows for off field landings

• Higher fidelity aircraft model

• Fast computation

• Manned or unmanned vehicles

• Modular design

Prior Forced 

Landing Algorithms

Where to Land 

Algorithm
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WTL1 Phase 1 Results
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Cost MapUC Berkeley Campus

No Fly Zone

Emergency Landing Location

1

3

Demo: MATLAB sim

Location: UC Berkeley

Vehicle: Quadrotor

Failure: 90% thrust (2D control only) 

2D Trajectory

Actual path

Planned path 

Start Location    o

Land Location o

Fault Location        o

2

o
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Phase 1  Phase 2
• Reduce the scope of WTL

– Focused application of WTL  Speed up development

– Find “real world” design/implementation issues

– Get pilot feedback with HIL simulation 

– Collect data to improve future versions

• WTL1  WTL2

– Quadrotor  NASA TCM/B-757 aerodynamics model

– No real time update  compute trajectories during fault

– No global cost map   NYC/New Jersey area ~100+ miles

– No fault detection  one predefined fault, dual engine failure

– 2D vehicle model  HIL 6DOF nonlinear aircraft simulation 

www.nasa.gov 9

PHASE 2 

GOALS

• Demonstrate WTL in HIL simulation 

• Develop tools to generate reachable trajectories
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WTL Development Plan
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Demo: MATLAB Sim

Location: UC Berkeley

Vehicle: Quadrotor

Failure: 90% reduction in thrust

2D Trajectory

Demo: HIL Sim w/ FLS on embedded H/W

Location: New York City +/- ~100 miles

Vehicle: TCM/B757

Failure: Loss of thrust

2D Trajectory

Demo: Flight test RC Aircraft w/ Pixhawk

Location: Edwards, CA

Vehicle: RC Aircraft

Failure: Loss of thrust, stuck control surface

3D Trajectory

Phase 1 – WTL1

Phase 2 – WTL2

Future Work
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WTL2 Architecture
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WTL2 Algorithm
1. Get current aircraft state

– Latitude/Longitude

– Altitude/Heading/Velocity

2. Convert states to local frame

3. Compute maximum glide range

4. Window cost map with max range

5. Get reachable set for altitude

6. Scale and project reachable set over map with heading

7. Find best reachable landing location using 2D convolution

8. Generate trajectory using optimal path planner 

9. Generate latitude/longitude waypoints 

10. Generate target headings
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Engine Out Scenario
• Complete loss of thrust

• Engine out during takeoff is the most critical 

– WTL2 Operational Range: 1000 ft – 4000 ft (TCM/757 185K GW)

– Less than 1000 ft  Can only land straight ahead

– Greater than 4000 ft  Can often return to airport

– Glide range will vary based on aircraft and configuration (i.e. weight, 

flaps)

• During failure  pilots must manage energy 

• Flying at L/DMAX maximizes aircraft range 

• L/DMAX  αMAX  gross weight  VGLIDE

• Flying at VGLIDE will maximize aircraft range
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Reachability
Reachability - Given a dynamic system governed by some 

differential equation and input defined over some bounded 

state space. What are all the states visited by the trajectories 

of the system

www.nasa.gov 14

• Reachability is a key technology for 

verifying safety critical systems7

• Reachability assures that a system 

can reach a target state while 

remaining within a safety envelope7

• Level Set Toolbox - computes 

reachable sets of hybrid systems 

with continuous dynamics using 

nonlinear ODE’s3

• Grid based computation
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Aircraft Reachability
Aircraft Reachability is gliding aircraft model with NASA TCM aerodynamics 

formulated as a PDE (HJ) and solved using the Level Set Toolbox. Aircraft 

trajectory has two modes. The two mode states are stitched together using 

a hybrid system model. 
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Mode 1 - Approach Mode

• TCM aerodynamics

• Glide equations

• Glide velocity

• Constant radius turns

• State constraints

Mode 2 – Landing Mode

• TCM 30° flap aerodynamics 

• Landing velocity

• State constraints

States

• Aircraft position 

• Velocity 

• Flight path and heading angles

Control

• Angle of attack

• Bank angle
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Reachable Set
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Unsafe

State

Target

State
Initial 

State

Reachable Set

State Trajectory

Reachable sets are a set of initial 

states from which the system is 

guaranteed to remain inside a 

safe region while eventually 

reaching a desired target3

State Constraints

V – Stall avoidance 

α, ϕ – Keeps aircraft within 

performance envelope

Acceleration - structural load limits 



National Aeronautics and Space Administration

Discrete Reachable Sets
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• Reachable sets generated every 100 ft from 1000 ft - 4000 ft

• Grid size 10e4x10e4 ft

• Normalized and stored as a binary map

• Oriented onto global map using aircraft heading
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Cost Map
• Hazard Map – constructed from population and geographical data

• Impact Map – constructed from density maps, land use maps, etc. 

• Total Loss Map = Hazard Map + Impact Map

• Map Size: 7201x5401 pixels (3.5+ million pixels)
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NYC Hazard Map NYC Impact Map
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Gliding Aircraft Equations
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• 3D motion of gliding aircraft over flat Earth

• Model assumes coordinated turns, no sideslip

Aircraft velocities

Aircraft acceleration

Flight path derivative

Heading derivative

Optimum glide velocity
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NASA TCM Model
• Nonlinear aircraft model 

developed by NASA Langley for 

NASA’s Aviation Safety Program 

• Transport Class Model (TCM) 

closely replicates B-757 

aerodynamics 

• For WTL2, TCM aerodynamics 

tables (CL,CD ) are used

• On landing transition to 30° Flap 

aerodynamics  

• Compute L/DMAX and αMAX
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Optimal Landing Location
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• Landing footprint is based on aircraft ground roll and impact area

• Optimal landing location = smallest total sum cost over landing footprint

• Found using 2D Convolution with FFT

o Reachable Node

 Searched Node

 Landing Footprint
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Optimal Trajectory Generation
• Dubins trajectory – gives shortest 

path between two points

– requires final location and final heading

– target heading here is the heading 

required to reach final landing location

• Two basic maneuvers 

– Gliding (maximize range)

– Turning (final orientation)

• Optimal turn radius – minimize 

energy loss with a constant radius 

turn 
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WTL2 C Code
• Dependencies

– GSL (Numerical Library) 

– GDAL (GIS Library)

• Makefile 

– generates executable for ARM, x86 processors

– ccompcert  safety critical C compiler

• V&V

– Use JPL Flight S/W Best Practices (JPL DOCID D-60411)

– Run code coverage tool

– Memory debugging tool

– Unit tests for critical functions 

– Test Cases

www.nasa.gov 23
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Test Cases
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Test # Altitude (ft) Latitude Longitude Initial Heading

1 1000 40.70° -73.8726° 270°

2 1000 40.70° -73.8726° 15°

3 1000 40.85° -73.70° 270°

4 4000 40.70° -73.8726° 270°

5 4000 40.70° -73.8726° 15°

6 4000 40.85° -73.70° 270°

7 4000 40.85° -73.70° 15°

8 3026 40.865 -73.88° 220

• Altitude variation – Bounded by two altitudes 

- Altitude < 1000 ft  Can only land straight ahead

- Altitude > 4000 ft  Should be able to return to airport

• Heading variation – Show effects of initial heading on trajectory

• Position variation – Show effects of initial position on trajectory

• Case #8 replicates US Airways 1549 failure
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Results: Test Case 1
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Altitude 1000 ft

Heading 270°

Latitude 40.7000°

Longitude -73.8726°

o Reachable location

+ Current location

 Landing location

---- Landing trajectory

Cost

1.0

0.5

0.0
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Results: Test Case 2
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Altitude 1000 ft

Heading 15°

Latitude 40.7000°

Longitude -73.8726°

o Reachable location

+ Current location

 Landing location

---- Landing trajectory

Cost

1.0

0.5

0.0
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Results: Test Case 3
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Altitude 1000 ft

Heading 270°

Latitude 40.85°

Longitude -73.70°

o Reachable location

+ Current location

 Landing location

---- Landing trajectory

Cost
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Results: Test Case 4
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Altitude 4000 ft

Heading 270°

Latitude 40.7000°

Longitude -73.8726°

o Reachable location
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Results: Test Case 5
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Altitude 4000 ft

Heading 15°
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Results: Test Case 6
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Altitude 4000 ft

Heading 270°

Latitude 40.85°

Longitude -73.70°

o Reachable location

+ Current location
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Results: Test Case 7
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Altitude 4000 ft

Heading 15°

Latitude 40.85°

Longitude -73.70°

o Reachable location

+ Current location
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Results: Test Case 8
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Altitude 3026 ft

Heading 220°

Latitude 40.86679°

Longitude -73.9298°

o Reachable location

+ Current location

 Landing location

---- Landing trajectory

US Airways 1549

Cost

1.0

0.5
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Figure 9:  2D Trajectory Profile (from Flight Data). 

 

 
 

Figure 10:  3D Trajectory Profile (from Flight Data). 
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 US Airways 1549 ground track


NTSB accident reconstruction

on Airbus simulator
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HIL Simulation Architecture
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HIL Simulation PC

TCP/IP

Embedded

Linux Board 

WTL2

Display
Pilot 

Controls

Nonlinear Aircraft 

Simulation
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WTL2 HIL Simulation
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HIL Simulation Data Overlay

WTL State On/Off 

Target V (kts) ###

Target Heading ###

Waypoint # #/#
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Future Work
• “Online” WTL  Fast Estimator/Online Reachable Set

• “Adaptive” WTL  Dynamic trajectories 

• WTL on Smartphones, Linux, PixHawk

• WTL + RTA (Run Time Assurance) framework 

• WTL + Backward Reachable Controllers
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WTL2 (current) 

Loss of Thrust

TCM/B-757

Linux

WTL3+ (future) 

Common A/C 

Faults

Any aerial vehicle

Linux, Mobile, 

PixHawk

Global Dynamic 

Cost Map

Local Static Cost 

Map
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Impact
• General Aviation 

– Pilots tend to be less experienced

– Mostly single engine aircraft 

• Commercial 

– Pilots are experienced and well trained

– Multi engine aircraft 

• Unmanned Vehicles

– Flight Termination Systems

– Lost Link Mode
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General Aviation Can improve odds of survival

Commercial Gives pilots more options

Unmanned Vehicles Can enable expanded UAS in the NAS
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Distribution
1. WTL Design: AIAA Conference Paper 

2. WTL2 Implementation: AIAA Conference Paper

3. WTL2 NASA Technical Memo 

4. NASA NARI Presentation 
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